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Outline

Fluctuations in A-A collisions: Initial or final state fluctuations?
Static thermal equilibrium predictions (and predictions for observables)

small chemical potential, remnants of O(4)-scaling
critical point: Z(2) scaling, observables
first order phase transition: spinodal decomposition
quarkyonic phase
are the signal unique?

Beyond statics: dynamical critical phenomena
H-model for liquid-gas phase transition
spinodal decomposition, statics and dynamics.
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Initial or finite state

Initial state fluctuations. Can be tested in pp collisions. Distribution of particles:
negative binomial

PNB(n) =
Γ(k + n)

Γ(k)Γ(n + 1)
kk〈n〉n

(k + 〈n〉)n+k

with the cumulants

c2 = 〈n〉
(
1 +
〈n〉
k

)
, c4 = c2

(
1 + 6

〈n〉
k

[
1 +
〈n〉
k

])
.

Negative binomial distribution was derived in the CGC framework (Gelis, Lappi,
McLerran 2009): k ∝ N2

c−1
2π Q2

s S⊥
Net baryon (or net proton distribution):

P(nnet) =

∞∑
nb=1

∞∑
nb̄=1

δnnet ,nb−nb̄
PNB(nb)PNB(nb̄)
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Negative binomial

n-th cumulant of net baryon distribution

cnet
n = cb

n + (−1)ncb̄
n

Zero chemical potential: cumulants of baryon and anti-baryon coincide, thus we
can use the results for cumulants of a single negative binomial to derive

c4

c2
=

(
1 + 6

〈nb〉

k

[
1 +
〈nb〉

k

])
.

Large chemical potentail: cumulants of net baryon distribution are defined by
baryons only, so we again get the same result
For any positive k, we obtain c4/c2 = 1 + positive number > 1
In experiment tails of net-proton distribution are narrower comparing to Poisson
with c4/c2 = 1.
Initial state fluctuations are washed out by the collective evolution.

Vladimir.Skokov@WMIch.edu Phase diagram RHIC/AGS 4 / 25



Theory predictions

First principles: Lattice QCD. µ = 0 plus the application of Taylor series in µB

and µS allows to study a larger domain of the phase diagram (within the radius of
convergence)

p(T , µ)/T4 ≈

n∑
i=0

1
i!
∂i(p/T4)
∂(µ/T)i

∣∣∣∣∣∣
µ=0

(
µ

T

)i

Universality: many properties of a system close to a continuous phase transition
are largely independent of the microscopic details of the interaction. Relatively
small number of classes, characterized by global features such as the symmetries
of the underlying theory, the number of spatial dimensions. . . This is for static
universality. Dynamic universality is more involved.
Instead of solving QCD at a critical point, one solves a simpler problem. Under
an assumption of the CP existence, the universality predicts properties of some
observables close to CP.

fs(t, h) = b−dfs(byττ, byh h), yτ =
d

2 − α
, yh = yτδβ

Models: NJL, linear sigma model, matrix models and etc. Trying to capture the
essential features of QCD.
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Theory predictions for a system at static/close to
equilibrium

Zero chemical potential
Finite chemical potential
Critical end point
Spinodals
Quarkionic phase
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Zero chemical potential: chiral properties I

The existence of the crossover phase transition is established by lattice QCD
Boring part of the phase diagram?
Not really! Two interesting phenomena: chiral and deconfinement phase
transitions.

Chiral phase transition: underlying second-order transition in the limit of zero pion
mass can be probed with high order cumulants.
At zero pion mass, the pressure has two contributions: analytic and singular.

p(τ, h) = pnonsing.(τ) + psing(τ)

Singular contribution to pressure is usually tiny:

psing ∼ (−τ)2−α

Here α is the specific heat critical exponent. For the O(4) universality class
α ≈ −0.21. The scaling variable τ = (T − Tc)/Tc + κµ2/T2

c . At zero chemical
potential, taking two derivatives wrt µ are equivalent to taking one derivative wrt T .
Taking a derivative w.r.t. τ (i.e. w.r.t. to T) enhances contribution from the singular
part. Three derivatives w.r.t. to τ or 6-th derivatives w.r.t. µ:

∂3p
∂τ3 ∼

∂6p
∂µ6 ∼ τ

−1−α.

Diverges close to the transition (τ→ 0).
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Zero chemical potential: chiral properties II

Cumulants with order of 6 and higher are sensitive to chiral phase transition.
For finite pion mass: no divergence. Singular part of pressure is given by

p = −b−df (τbyτ , hbyh )
(b→h−1/yh )

= −h
2−α
δβ f (z), z = τh−

1
δβ .

c6 ∝ ∂
6p/∂µ6 ∝ −h(−1−α)/δβf (3)(z)

O(4) scaling function
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Zero chemical potential: deconfinement

Change of the degrees of freedom:
Small temperature: degrees of freedom carrying baryon charge have unit baryon
number.

R4,2 =
c4

c2
=
χ4

χ2
→ 1

Large temperatures: degrees of freedom carrying baryon charge have fractional
baryon number (1/3)

R4,2 → 1/9

in fact R4,2 →
1
9 ·

6
π2 owing to Fermi statistics.

The change from 1 to 1/9 is attributed to deconfinement.
Lattice QCD
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Matrix model with quark d.o.f.

Model w/o chiral dinamics

R
 4

,2

0

0.2

0.4

0.6

0.8

1.0

T/Tpc

0.6 0.7 0.8 0.9 1.0 1.1 1.2

Vladimir.Skokov@WMIch.edu Phase diagram RHIC/AGS 9 / 25



Finite chemical potential

We established that deconfinement and chiral transitions lead to negative c6(µ = 0).
This already tells us something about fluctuations at finite chemical potential

c4(µ) = c4(µ = 0) +
1
2

c6(µ = 0) ·
(
µ

T

)2
+ O

[(
µ

T

)4
]

The second term brings negative contribution and dominates for chemical potential(
µ

T

)2
≥ −

1
2

c6(0)
c4(0)

An estimate: if c6(0)
c4(0) ≈ −1, µ

T ≥ 0.7 (this corresponds to
√

s ≈ 40 GeV).
A decreasing or even negative kurtosis owing to physics of zero chemical potential.

Vladimir.Skokov@WMIch.edu Phase diagram RHIC/AGS 10 / 25



Critical point

Assuming that CP exists, properties can be predicted.

QCD CEP: Z(2) static universality class, H-model of dynamic universality
Mapping to “temperature”, τ, and magnetic field, h, of 3d Ising model:

τ = a1(T−Tc)+a2(µ−µc), h = b1(T−Tc)+b2(µ−µc)

The mapping is not conformal in general, so the
angles are not preserved.

Universality does not constrain the location of
critical point.

The size of the critical region is also a
non-universal property.

Universal scaling function

ps ∝ −b−df (τbyτ , hbyh ), yτ ≈ 1.57, yh ≈ 2.48

τ

h
T

µ

mapping to 
 Ising model
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Critical point: properties

Singular contribution to cumulants
cn ∝ ξ

3
(

nβγ
2−α−1

)
, where ξ is the correlation

length. ξ diverges at critical point.

3
(

nβγ
2−α − 1

)
is positive for n ≥ 2, βγ

2−α ≈ 0.86
Divergence of the correlation length
dependes on the direction:
along τ axis: ξ ∝ τ−ν ≈ τ−0.64

along any other direction: ξ ∝ h−ν/βδ ≈ h−0.4

τ

h
T

µ

mapping to 
 Ising model

While τ axis direction is not common in general, it is the most relevant for HIC physics. τ
coincides with an isentrope, s/nB = const: consequence of the universality and hierarchy
of the critical dimensions yτ < yh.
Indeed, for h = 0: T − Tc ∝ µ − µc. Therefore, taking derivative of pressure and neglecting
corrections proportional to (T − Tc)1−α, α ≈ 0.125,{ nB − nBc = s − sc = 0.

Isentropes in critical regions are parallel to the phase transition line! Good news
for HIC!
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Critical point: sign of kurtosis

Careful analysis of the sign shows that
kurtosis is negative if approached along the
phase transition line (M. Stephanov, 2011)
Although the angles and relation between
minimum and maximum of kurtosis along
h=const lines are known, these does not
provide any useful information for QCD,
because the mapping is not conformal and
not universal.
From the discussion we had before: negative
kurtosis is not a unique signature of CP.
Another important piece of information
from universality: below the phase transition
region c3 and c3/c2 receives positive (and
potentially large) contribution from critical
fluctuations.

τ
h

T

µ

negative 
kurtosis

φ

Schematically:

c3

c2
= tanh

(
µ

T

)
+(Positive const)×ξ2.58.
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Critical point: structure

Model calculations: Polyakov loop extended Quark Meson Model (quarks
perturbatively interacting with mean-field gluon field, A0, plus chiral degrees of
freedom)
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Critical point: experiment

CP “predictions”:

Deviation from HRG at the same
energy for c3/c2 and c4/c2. X

Deviation from HRG stronger for
c4/c2 than for c3/c2. X

c3/c2 above HRG, c4/c2 below HRG.
7

Experiment vs HRG

2
 / 

c
3c

0.0

0.5

1.0

1.5  (GeV/c) < 0.8, |y|<0.5
T

0.4 < p

 (GeV)NNs
7 10 20 30 100 200

2
 / 

c
4c

0.0

0.5

1.0

1.5

Au+Au (0-5)%

   

   

           STAR      HRG    
pp -       

error bars not shown

below HRG

below HRG

from P. Netrakanti et al, 1405.4617

Vladimir.Skokov@WMIch.edu Phase diagram RHIC/AGS 15 / 25



Critical point: dynamics

Critical phenomena are not limited to statics only.
Critical slowing down, divergent kinetic coefficients.
QCD CP is expected to belong to the model H of Hochenberg-Halperin
classification.

Model H: fluctuations of conserved order parameter (entropy for liquid-gas phase
transition) coupled to transverse momentum.
For QCD dynamics: order parameter is the mixture of the baryon number and the
chiral condensate.
Dynamical universality classes do not completely characterized by static
universality classes! New ingredients: conservation laws, mode-mode couplings.

Vladimir.Skokov@WMIch.edu Phase diagram RHIC/AGS 16 / 25



Implication ofModel H for QCD

Divergent bulk viscosity η ∝ ξ
1
19

The divergence is very mild.

Divergent bulk viscosity ζ ∝ ξz−α/ν ≈ ξ2.8

z is the dynamic critical exponent, z ≈ 4 − 18/19.

Divergent heat (and charge) conductivity λ ∝ ξ
18
19

Clusters with lower entropy
tend to move along the
temperature gradient;
Clusters with higher entropy
tend to move opposite to the
temperature gradient.

T

r

∇T

+
-

+

+

+-

-
-

-

entropy clusters: - δs <0

+

+ δs >0

C. Agosta et al J. Low Temp. Phys. 67, 237 (1987). J. Luettmer-Strathmann et al J. Chem. Phys 103, 7482 (1995).
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Divergent bulk viscosity

Large bulk viscosity may lead to low effective pressure, lower than pressure of
hadronic phase.
{ hadronic phase will become a proffered phase
{ intensive bubble formation (cavitation)
{ instability of fluid evolution

Experimental observables:
Irregularities in flow and HBT.
Formation of clusters{ non-trivial correlation of hadrons (surface tension).
Hadronization at higher T lower µ compared to HRG predictions; thus anomalies
in rations of multiplicities π/p.

ζ ∝ ξ2.8

compare to the divergence of the cumulants

c2 ∝ ξ
2.16 c3 ∝ ξ

4.74 c4 ∝ ξ
7.32
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First-order phase transition: statics

Non-equilibrium statics: divergent c2 on spinodals
Divergence is rather mild

c2 ∝ |µ − µ0|
−1/2

In the hadron phase, singular contribution to c2, c3 and c4 is positive.
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First-order phase transition: dynamics

Spinodal decomposition: formation of bubbles.

Similar to cavitation, ratio of the surface tension to the viscosity plays a key role.

Clusters{ multi hadron correlations in rapidity.
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First-order phase transition: chiral model simulations

C. Herold, M. Nahrgang, et al arXiv:1304.5372

First order phase transition
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Quarkyonic phase: statics and dynamics

Quarkionic chiral spiral, Gross-Neveu model with vector interaction.

c2 is finite, while

c3 ∝ ln(µ − µ0), c4 ∝
1

(µ − µ0)

Very mild divergence in c3, strong divergence in c4. Both come with the negative
sign!
Quarkyonic phase is inhomogeneous and characterized by a specific wave
number, k.
Photon spectra will be modified at k!
G. Torrieri et al Phys.Rev.Lett. 111 (2013) 1, 012301

Vladimir.Skokov@WMIch.edu Phase diagram RHIC/AGS 22 / 25



Independent proton/antiproton I

Experimental data shows that net proton fluctuations can be described by independent
proton/antiproton fluctuations

cnet
n = cp

n + (−1)ncp̄
n
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Theory:
No guidence from
lattice QCD on 〈nbnb̄〉

Models with phase
transitions: serious
limitations.
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Independent proton/antiproton II

Model: separate potential for quarks (µq) and anti-quarks (µq̄).
Confinement is encoded in suppression of quarks at low T .

After computation, µq = µq̄, 〈nqnq̄〉 =
∂2p

∂µq∂µq̄

∣∣∣∣
µq=µq̄

Possible sources of correlation
σ-meson exchange (particularly
important close to CP)
Polyakov loop l

Signal is very weak and can be lost owing
to hadronization, “acceptance”
corrections, etc.

Polyakov loop only:
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Conclusions

QCD phase diagram can be studied with fluctuations! Each transition has
something unique.

However, some unique features demand a very high resolution.

Can we achieve this resolution in HIC?
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